On the Hadamard Product of the Golden Matrices
نویسنده
چکیده
In this paper we did a generalization of Hadamard product of Fibonacci Q matrix and Fibonacci Q−n matrix for continuous domain. We obtained Hadamard product of the golden matrices in the terms of the symmetrical hyperbolic Fibonacci functions and investigated some properties of Hadamard product of the golden matrices. Mathematics Subject Classification: Primary 11B25, 11B37, 11B39, Secondary 11C20
منابع مشابه
Weak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملHermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
متن کاملOn the Hadamard product of inverse M-matrices
We investigate the Hadamard product of inverse M-matrices and present two classes of inverse M-matrices that are closed under the Hadamard multiplication. In the end, we give some inequalities on the Fan product of M-matrices and Schur complements. © 2000 Elsevier Science Inc. All rights reserved. AMS classification: 15A09; 15A42
متن کاملIsolated Hadamard Matrices from Mutually Unbiased Product Bases
A new construction of complex Hadamard matrices of composite order d = pq, with primes p, q, is presented which is based on pairs of mutually unbiased bases containing only product states. We illustrate the method for many product dimensions d < 100 by analytically deriving complex Hadamard matrices, both with zero and non-zero defect. In particular, we obtain at least 12 new isolated Butson-ty...
متن کاملOn inequalities involving the Hadamard product of matrices
Abstract. Recently, the authors established a number of inequalities involving integer powers of the Hadamard product of two positive de nite Hermitian matrices. Here these results are extended in two ways. First, the restriction to integer powers is relaxed to include all real numbers not in the open interval ( 1; 1). Second, the results are extended to the Hadamard product of any nite number ...
متن کامل